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Abstract~An equation set for multidimensional, time variant, inviscid flow of a condensing vapour is 
presented. The equations include the effects of relative motion between the primary gas phase and the 
suspended liquid droplets. They have been formulated with steam turbine applications in mind but are also 
relevant to problems of gas-particle and liquid bubble flow. 

It is shown that the critical velocity in one dimensional choking of low pressure wet steam is identical 
with the "frozen" speed of acoustic propagation, and the variation of choking mass flow with respect to 
equilibrium based calculations is described. Results obtained with two different models of droplet growth 
are compared, and simple formulae for calculating limiting values of choking flow are given. A generalised 
loss coefficient including the effects of thermodynamic and kinematic non-equilibrium is introduced. 

I. [NTRODUCTION 

One class of multiphase flow problems which lend themselves readily to mathematical descrip- 
tion are those involving small droplets or bubbles suspended within a primary gaseous or liquid 
phase. Formulating a mathematical model to deal with such flows entails setting down the 

equations of motion and energy conservation for the separate phases with correct accounting of 
the transfer of mass, momentum, and energy between the phases. This matter has presented 

some difficulties in the past, for example at a 1967 Euratom conference, Wundt remarked "It is 
a staggering fact that there is no distinctness in the bibliography on such a relatively simple 
matter as is the question about the necessary and sufficient number of equations and variables 
to describe multiphase gas-liquid flow". Similarly Deich & Se[eznev (1968) observed "The 
fundamental equations of motion persist as one of many outstanding problems in the mechanics 

of two phase media". 
Equation sets have appeared frequently in the literature, e.g. Gyarmathy (1962), Deich (1968), 

Kiriilov (1970), Moore (1976), but restrictive assumptions appropriate to particular problems 
have usually been made, for example relative motion between the phases is often neglected, 
droplet temperature dynamics simplified and the equations given in steady one dimensional 
form. The papers concerned with a more general view have tended not to explore questions 
surrounding the choice of interphase transfer terms. It is the intention here to present an 
equation set which is sufficiently general to form a basis for the solution of a wide range of 
multiphase flow problems, and yet is specific enough regarding the transfer terms for a 
gas/droplet system to be of immediate use to engineers concerned with non-equilibrium 
calculations in wet steam which arise in turbines, heat exchangers, etc. The application of the 
equations is illustrated through the fundamental problems of choking, acoustic propagation, and 
loss, where restrictive assumptions can have significant effects. 

The mathematical model presented describes a continuous vapour phase containing a 
distribution of liquid droplets of varying sizes and velocities which may be in the process of 
nucleation, condensation or evaporation. With simple modifications of the terms the equations 
for a liquid bubble system or chemically reacting gas particle flow can be obtained.. It is 
impractical to include the detail of individual droplet flow fields in the model for this would 
require the solution of a non-steady multiply connected flow problem. One must therefore seek 
a macroscopic representation of the nett flux contributions of each phase in the continuity, 
momentum and energy equations. Following the approach of Kirillov et al. (1970), and Deich & 
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Fillipov (1968) "smoothing operations" are postulated to deal with discontinuities at the phase 
boundaries, and the droplet properties (e.g. temperature and velocity) are treated as continuous 
and differentiable functions of space and time. The modelling assumptions are realistic so long 
as the gas properties in the far field of a droplet do not change significantly over distances of 
the order of a droplet diameter. The droplets are taken to be incompressible and spherical. 
viscous forces at the external boundaries of the gas phase are not considered, but the droplet 
drag and heat interactions are included. 

The basis of the flow model 

The liquid phase is divided into droplet groups designated by the subscript i and dis- 
tinguished by the size of the member droplets at some specified position in the flow field. The 
droplets once labelled remained in the same group throughout their flow history. 

Let av be the volume of an element of gas-droplet mixture comprising av" of gas, and &,' of 
liquid 

then 

av = av" + av' 

where 

~V' = ~ ~Vi 

and 5v~ is the volume occupied by the ith droplet group. A similar relationship holds for the 
component masses 8m, ~m" and am', and we also have 

atn = pSv am" = p"&," &n, = piavi 

where p, p", and t,. are the densities of the mixture, gas, and liquid making up the ith droplet 
group. 

The droplet group mass fraction 

&hi = Pi&2 
Y' = 8m pay = nimi. 

The total wetness fraction 

Y = ~ ~mi 

and the gas fraction 

am" = p"~v" 
( I - y ) =  am p6v " 

[l.ll  

Consider the mass flows of the various phases through a small surface ,~s. A surface 
threading droplets of the ith group sweeps out a volume (u, • 8s)at in a time increment at. The 

mass of the ith phase contained is py~(u~ • as)~t so we have the flux components py~(u~ • as) for 
the ith group and p(I - y)(c- ~s) for the gas. I f  we imagine the total surface to be divided into 

sub-surfaces passing each phase alone 

8s = 8s" + ~ 8s+ 
I 
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then the continuity relationships require 

8s,=PYiss and 8s"=p(l~;Y)Ss. 
P~ p 

[I.2] 

Following Kirillov et al. (1970) the hydrostatic pressure is assumed to act on the appropriate 
sub-surface when we formulate equations of motion for the individual phases. This procedure 
preserves the correct additive relationships between component and overall mixture equations. 
From [1.1] 

l = (I 2:)+ Z [I.31 
P P Pi 

If all the liquid droplets are of equal density p', and low pressure steam conditions prevail, then 
p'-> p" and p -p"/ ( I  -y ) .  With these assumptions the droplets are reduced to point sources or 
sinks of heat and matter distributed throughout the gas, but having, possibly, a relative motion 
with respect to it. 

2. THE FLOW EQUATIONS 

The flow equations for each phase may be derived, e.g. Jackson (1976), by considering the 
motion of a surface S threading elements of the phase and enclosing a variable volume V. 
Mass, momentum and energy balances for the volume lead initially to integral equations. The 
differential forms are then obtained via Gauss's theorem. 

Continuity equations 
For the gas phase the integral equation reads 

f,~(p(l-y),dv+~p(l-y)c.ds=-~ f n:it,pdv [2.11 

and the differential form is 

~(p(l-y)) (p (y)e )  p ~ n:n~. + V. ! [2.21 
i 

The term n,m. which represents the total transfer of mass from the gas to droplets of the ith 
group in unit mass of mixture, is replaced by J,m~ if the droplet group is in the process of 
nucleating. 

For a droplet group integral and differential forms are: 

f f  (oy3dv +  y,u, .ds= n,m,  du [2.3j 

O~f" (PYi) (pyl ui) pnimi [2.4] + V. 

or the equation for conservation of droplet number 

~(pni) V(pniui) =pJi + 

may be used in place of [2.4] where J, denotes the nucleation rate. Summing the individual 
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phase equations gives the overall continuity expressions for the mixture and the r.h.s, source 
terms vanish. Corresponding summations in the momentum and energy equations also remove 
weightings in pressure terms. 

Momentum equations 
The momentum transferred between the phases is mec where e~ is the velocity of the phase 

from which the transfer proceeds, i.e. for condensation 

and for evaporation 

t/li>0 ¢G =¢ 

rh i<O CG =Ui. 

For the gas phase: 

~. ,o,,-,,,: dr-,. f,o(,-,.)c,c. ,s,.,. ~ f, ,.,,,~, co,o ,~_-_ f ~ , ,  ,~s- ~ f ,,,,,, ,,v. 
[2.51 

Applying Gauss's theorem, shrinking the arbitrary volume to zero, and subtracting the product 
of the continuity equation [2.2] with e, gives the differential form 

o,: (,,(,~y,,,) 
p ( l - y ) ' ~ ' = - V  ~ - pniDi+Epnitili(¢-¢c; ) 

I 

[2.6l 

where D/Dr = a/at + c. V denotes differentiation following the motion of the gas phase i.e. a 
material derivative. 

For a droplet group: 

~_t f py, u, dv + f py, u,(u, . ds)_ f ndh,c~p dv = _~ PY_.2p, p ds+f ,  nD,pdv. [2.7] 

Applying the same procedures as for the gas phase gives 

Du,= - v ( ~  ) +,on, a, + On,,/,,(c,~ -u,). PYi Dti \ Pip [2.8] 

Energy equations 
The rate of energy transfer between each droplet and the gas phase is th(~a + c~2/2) where 

~ is the internal energy of the saturated vapour at the droplet surface as distinct from e" the 
energy of the gas in the far field which may be either superheated or supercooled. Konorski 
(1976) takes account of distributions of temperature both within the droplets and in the gas field 
and gives expressions for the mass averaged energies of the phases which depend on the mean 
distance between droplets. No such corrections are made here. 

Equating the energy change for a moving volume of gas with the total heat and work 
transfer gives 

P c  1 I 

_- ,~-~ f ,o(,- ~ f ,.,,,n, (~o ..,. ~ ) , ,  ,,v 
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where c)~ and D~ are the heat transfer rate and drag of an individual droplet respectively. The 
term Dv~//~ has been dropped since the droplets are assumed incompressible but it would be of 
importance in a liquid-bubble system. 

Now for a scaler g 

D =~gdc+~,V.(gc)dv. D--t f,. g dv & J,, 

So applying Gauss's theorem and regrouping to introduce the enthalpies 

I~G = iC +-~G h" = e" + ~ 

we obtain the integral equation 

¢2 

f, ,,q,pdv- f, ,,D, "u,pdv --a £ p(,- 

+ ~ p ( I - y ) ( h " +  2) (¢  • ds) + ~ f~ n,dl,(ho+C--~)pdv. [2.9] 

Subtracting the product of the continuity equation [2.2] with (h" + c:12) from the differential 
form of [2.9] and adding the dot product of the momentum equation [2.6] with the velocity c. 
yields 

~ pnfl, + ~ pn, D, "(c-u,)=p(I-y)('D~tt" i D_p_\ [(/~a _ h,,) + ~ (e _ c(;)z]. ;" Dt )+ ~, pn,tn, 

[2.101 

(The condition plp~ ,~ I, is applicable unless high pressure conditions are being considered.) 
Repeating the procedure for droplets of the ith group we have 

W 2 
-~, n,il,pdv+ f,n,D,.u~pdv=~ f py~(e~+-~)dv 

U.2 2 

and the differential form 

/Dh, I Dp . [([~G_h,)+~(cG_u,)21" - P"'q' = PY' p, Dt ) -  p,,,m, [2.12] 

The group (/to - hi) is the latent heat of phase change. In a non-equilibrium process some of the 
total heat transfer is accounted for by the first r.h.s, term. The ratio of this term and the heat 
transfer varies directly with the expansion rate and inversely as the square of the droplet 
radius. The term should not be neglected without careful consideration of the particular case 
concerned. 

The flow equations are not restricted to any particular kind of vapour or pressure regime 
until a specific equation of state is adopted and the relationship between mixture and 
component densities decided via [i.3]. In order to form a determinate equation set, we may take 
any two of the separate phase and mixture equations for each of the conservation laws. The 
differential continuity, momentum, and energy equations for the gas, [2.2], [2.6], [2.10] and the 
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corresponding 3n droplet group [2.4], [2.8], [2.12], together with an equation of state, total 
(3n +4) equations. The dependent variables are taken to be pL c, u, p, T. y~, rn, Ti. Other 
variables, e.g. n~, r~, h", etc. can be considered as auxiliary. For a condensing steam flow with 
fine-droplets it is convenient to follow Gyarmathy (1962) and set the droplet temperature 
according to the surrounding gas temperature and pressure through the relationship 

Ti = T,  - (T~ - T")r*/r~ [2.131 

where the critical radius 

2o" 

Kirillov (1970) gives 

hi = hL - CL(T~ - Ti)  + 3 a l p : i  ItG = hG - C p ( T ,  - T i )  

for the droplet and transfer enthalpies respectively when the droplet surface tension is 
expressed as ~r~ = a - bTi .  T ,  and hr. are the 'flat surface' saturation temperature and enthalpy, 
and the additional terms represent corrections for capilliary effects which are significant for 
very small droplet sizes. Prescribing the droplet temperature via [2.13] reduces the number of 
dependent variables to the required (3n + 4) and we have then a determinate equation set. An 
alternative approach is to retain Ti as a dependent variable and introduce an additional droplet 
growth law. In the free molecule regime (Kn ,> I), the arguments of kinetic theory lead to the 
Hertz-Knudsen formula for droplet growth rate 

2 8rr p f~,(T, ri)~ [2.141 m, -- o:, ,/ 

where/~, is the saturation pressure for a droplet of temperature Ti and radius ri, and a,, is a 
condensation coefficient 

:, = p~(T i )  e '''/''Rr~. 

The heat transfer rate from a single droplet is written 

4i = 4~'ri"ai(Ti - T") 

and slightly adapting Gyarmathy's (1962) expression for heat transfer coefficient to include 
forced convection effects gives 

Nuo 

1.5 y+l 

where k is the gas thermal conductivity and Kn the droplet Knudsen number. Nuo is the droplet 
Nusselt number corrected for any relative motion with respect to the gas. From Deich & Fillipov 
(1968) 

Nuo = 2 + 0.03Pr °'" Re °'s4 + 0.35 Pr °'~ Re °~H 

where Re is the relative flow Reynolds number and Pr the Prandtl number for the gas. 
Gyarmathy (1962) has shown that taking [2.13] in conjunction with [2.15] is a good ap- 
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proximation for the Hertz-Knudsen formula. This procedure has the advantage of smoothly 
linking the free molecule and continuum regimes. The transfer formulae remain a point of some 
contention. Puzyrewski & Studzinski (1980) have proposed a droplet growth model which uses 
a refined form of the Hertz-Knudsen formula and retains droplet temperature as a dependent 
variable. An intermediate temperature T~ is defined where the Hertz-Knudsen free molecule 
model applies across a temperature discontinuity (T~- T~) at the droplet boundary. Con- 
ventional continuum conduction formulae are assumed to apply between the droplet surface 
and the far field gas at temperature T". 

From kinetic theory the temperature discontinuity is given as 

T,- 
\ ~gr/,=,~ 

where/3 is a coefficient of order unity, and ~. the gas mean free path. 

For heat conduction with spherical symmetry 

i i  = 4 r r r " k  cgT 
ar 

Integrating from r = ri to r = oe and allowing for relative motion with respect to the surrounding 
gas 

, k  
c~ = 4rrrf ~ Su,,(T~ - T") 

hence 

Eliminating TI 

X Nuo T" T, +/3 ~"~- 
T~ = [2.161 

I +/3 X__ Nu. 
ri 2 

il = 4 rrr,"ai( Ti - T") 

where 

k Nuo 
ai = 2r, [1 + fl X Nu,~" 

7,-T/ 

Following Puzyrewski & Studzinski we may equate the expressions for continuum and free 
molecule heat transfer to obtain the condition 

Taking 

(2 - a,.) kx/(2rtRT;) [2.171 
fl = 2(a~ + a=(l -a~)) pC~, 

_ 1.5/z" and a,. = I 
p " V t R T ; )  

k Nu, 
a i = - - [  ( 2 -  a¢~X/(87r) Kn ]" 

?ri I + \  2a,. ] 1.5 -~(0.SNuo) 
[2.181 
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It is interesting to note that this is identical in form with Gyarmathy's expression for the 
heat transfer coefficient [2.15]. The group (3'/(3' + 1)) has been replaced by 0.5. If one wishes to 
take account of Knudsen's effusion effect for energy transfer through small surfaces then Cp is 
replaced by (Cp-R/2) in [2.17] and the group (7/(3' + 1)) is obtained. The latent heat in [2.12] 
should be correspondingly modified. 

The group (2ad(2-  a~)) results from the Schrage correction in the modified Hertz-Knudsen 
formula for droplet growth rate 

thi= ( 2a~. ' ) ~  (~) (~- - -~ i  l~,(Ti, ri)'~ [2.19] 
\ 2 -  a,./ v ' r i  ]" 

The associated relaxation time 

T 3 = - -  _ _  

(2 - a,.) X,/(2rr) x/(RTi) 
2a,. 3 piri P 

proves to be two orders of magnitude smaller than the thermal relaxation time r~. Equations 
[2.121 and [2.191 together constitute the original Puzyrewski & Studzinski model, but the 
possibility of discarding [2.19] and using Gyarmathys equation [2.131 for droplet temperature in 
conjunction with [2.18] for the heat transfer coefficient suggests itself as a likely accurate 
approximation. 

This abbreviation of the model avoids the computational restrictions imposed by the 
relaxation time r~. 

3. N O N  E Q U I I , I B R I U M I , O S S P R O C E S S E S  

Before moving on to particular applications of the flow equations it is instructive to consider 
the corresponding expressions for entropy increase. This provides a means to compare internal 
losses resulting from non equilibrium exchanges of heat and momentum between the phases 
with the conventional aerodynamic losses associated with boundary layers, shock waves, etc. 
which arise in transonic steam turbine blading. 

In steady flow the gradient of entropy flux is given by 

[3.1t 

since from continuity 

i t 

Making the substitutions 

T" Ds" = Dh" 1 Dp 
Dt Dt p" Dt 

Ds_._~, = Dhi Dh, I Dp 
Ti Dr, Dt--'7 = Dt--"7- Oi Dt 

in the energy equations [2.10] and [2.12] we have 

i i i 

i 

[3.21 
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For the condensing case cG = ¢ and the entropy flux gradient is 

• . . /  I 1 \  . /(h"-h~) 
~,, pn,[(q, - rh,(h~ - a,,)[-~,--~,) + m, t" "~7 
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I ( c  - u,)" (s"- s,)) + ,., ~. ].; + 
o, 

[3.31 

For the purpose of illustration assume a perfect gas and saturation droplet states, then T~ = T,, 
hi = hL. si = sL. T~sL~ = hLc,. and 

TFw 
h"-  hG = Cp(T"- T,) s " -  so = Cp lu -~ .  

Put AT = T~- T", All = c - u ,  and take q = lilihLG (which for small droplets is a good ap- 
proximation) then the first group of terms in expression [3.3] vanish, we have finally, 

~ pn:il,CI, x 

for the thermodynamic component of entropy change where 

F/h~ (; \AT J 

[ [3.41 

The behaviour of the function .~ is shown in figure 5. til~ is positive or negative depending on 
whether the gas is supercooled (AT >0) or superheated (AT <0) hence the thermodynamic 
entropy change is always positive or zero as required by the second law. The same is true of the 
entropy change due to relative motion between the phases which varies as the square of their 
velocity difference All. 

We may define a generalised loss coefficient to include non-equilibrium effects by analogy 
with the traditional Markov loss coefficient for single phase flow. 

Markov gives ~ = - ( T  ds/dh,) where dh, = (l /p)dp the suffix s denoting an isentropic 
enthalpy change. Define 

T"V. [p ( l -y )cs"  + ~/ py~u~si] 
= (3.51 

as a ratio of the divergences of the entropy and isentropic enthalpy fluxes then this new loss 
coefficient reduces to the Markov definition in the case of equilibrium flow. 

In steady flow - e. Vp is the local expansion rate -/~ of the process so 
for thermodynamic loss 

~t = CpT" ~ pn:itix/(- p) [3.61 
I 

and for kinematic loss 

I • T "  [3.7] 
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The droplet growth rate and drag can be calculated with the aid of the relaxation times 
defined in section 5. 

y ,CeAT ~u  
n,rhi = C,,ht orl niDi = v i -  

Taking a supercooling 3T of 30°C and plausible values for slip speed ~u in [3.61 and [3.7] 
for 3% monodispersions of various droplet sizes in steam at 0.1 bar, gives the following table of 
loss coefficients 

r t tm  rl ~.s r: ~.s 3u m/s Et E., 

0.01 7.55 0.17 0 0.476 - -  
0.1 82.6 1.92 10 0.1k135 0.0011 
1.0 I 530,0 38.1 30 0.0023 0.0005 

The coefficients have been based on an expansion rate of l0 s bar/sec. Konorski quotes rates 
between 10" and l0 s bar/sec as typical of L.P. steam turbines. The highest thermodynamic 
losses occur for the combination of very small droplets and deep supersaturation which arises 
in practice following nucleation when fresh droplets grow rapidly. It is doubtful that the 
kinematic losses ever exceed the order of 0. I% whilst instantaneous thermodynamic losses of 
order 10% can occur. The instantaneous loss coefficients provide only limited information since 
deep supersaturation occurs only transiently in steam turbines and to arrive at the final overall 
loss requires detailed computation of the flow history. 

4. ONE DIMENSIONAl. CHOKING IN I,OWPRESSUREWETSTEAM 

The equations for steady one dimensional flow through a duct of cross sectional area A(x )  

are found by making the appropriate reductions to the more general equations given in section 
2. The algebra is simplified by choosing separate phase equations. For the sake of conciseness 
the equations are given for a monodispersion of droplets. The gas phase is assumed calorically 
perfect so we have 

C p - C ~ = R  and h"=Cs, T"+h:. 

From the gas and liquid continuity equations [2.11 and [2.3] 

I d p " + l d c +  nu dm I dA 
p"dx cd-xx c ( I - y )  dx = Adx  

l dp" I du l dv I dm I dA 
--p"dx +-u--dx + y ( l "  y) dx m dx - A d x "  

The momentum equations [2.6] and [2.8] reduce to 

dc ( I - y ) d P = _ n D  
( I -y )C~ 'x~  p" dx 

du dm 
yu ~ - ( c - u ) n u  ~ =  nD 

and from the energy equations [2.10] and [2.12] we have 

(I - v)Cec dT"  (I -,..)')c dp , dm " dt -p- dx + Cr'(T - T")nu ~ = nit + nD(c  - u) 

YCz'RT'2 zt-~-[h, .c ;  I _u) . , ]nudm +~(c -nq 
pht.c, ~ = 
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where the drag 

D _ 3np"d(c -u) 
(, +2.53Kn) [ I+ (*)=]“8 

is calculated on a quasi-steady basis. 

These equations together with the equation of state in differential 

I dp” 1 dp I dT” -----+7,_= 
p” dx p dx T dx 

0 

may be expressed in matrix notation 

form 

where [A] is the square matrix of derivative coefficients. 

{c} and [B) are column vectors of dependent variables and “source” terms respectively. 

{# = (p”. c. u, p. T”. y. m) 

{B)‘=(-ig, -fg, -nD.nD.nci+nD(c-u).-n4.0). 

To solve this system of equations we require explicit equations for the derivatives, i.e. 

$c”‘= det[A] * 
adM(W 

The equations are singular if det [A] =0 which is the condition for choked flow. A 

procedure given by Davidson (1974) for removing the singularity has been employed. The 

independent variable change x = ]det [A]]2 is made giving 

k(u) = sgn (det [Al)adj [Al{B} 

which can be integrated in the region of the singularity. For cases of choked flow it is necessary 

to select an initial value for the gas velocity c such that adj [A]{B} and det [A] reach zero 

simultaneously, since only then can the derivatives (d/dx){u} remain finite at the singularity. A 

computer program SLIPFLO was written to integrate the equations numerically using a fourth 
order Runge-Kutta method. 

4. I The chokhg jbv condifion and fhe effecf of simplijications in fhe j7ow model 

The singularity criterion, det [A] = 0. for [4. I] gives 

I4.21 

The singular velocity c* is slightly less than the acoustic speed of the gas phase alone 

a” = t/(yRT”), and greater than the equilibrium acoustic speed a,. given by [5.4]. It can be 

shown from the compatibility condition, adj [A](B) = 0, that the singularity condition occurs a 
small distance downstream of the geometric throat in a condensing flow (e.g. figure I). It is 

necessary to compute the preceeding flow history to accurately determine the choking mass 
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flOW. G. 

G = p*A*[(I - y*)c* + y'u*]. 

The expressions for the singular velocity given by Gyarmathy & Moore (see Moore & 
Sieverding 1976) differ from [4.2]. chiefly by a factor of ( I -  y)-'~". This is a consequence of 
their use of the homogeneous flow model in which the droplets and gas are assigned a common 
velocity. The singularity condition is as Gyarmathy remarks, formulation dependent. If for 
example the droplettemperature T' is treated as a dependent variable and a droplet growth law 
is used. the simpler condition c* = a* ensues. The complexity of [4.2] is then a consequence of 
simplifying the droplet temperature dynamics. The numerical effect on c* is almost negligible, 
typically less than 0.1%, and the computational advantages are considerable. 

The situation with regard to the homogeneous flow assumption is more troubled since it 
causes reductions in c* of several percent, however the complexity of computing separate 
droplet motion in two or more dimensions for several droplet groups provides a strong 
incentive to seek other reductions. For small droplets it is very tempting to discard 

(i) All terms involving velocity differences between the phases. 
(ii) The equations of continuity and momentum for the droplets when the droplet motion 

itself is not of interest. 
The approximation entailed in setting u, = e depends on whether mixture or separate phase 

equations are used. In the mixture equations it constitutes the homogeneous flow assumption 
and implies an artificially high interphase drag, which slightly reduces the choking mass flow. A 
false dependance of the singularity condition and acoustic speed on wetness fraction also 
results. The approximation may however be made in the separate phase equations without 
distorting the transonic behaviour. This amounts to neglecting the interphase drag and asso- 
ciated kinematic losses. The choking flow is hence overestimated (see section 4.3). For very 
small droplets (r < 0. I/xm) very short inertial relaxation times apply (e.g. r, < I ~sec) and it 
becomes time consuming to compute separate droplet motion from its differential momentum 
equation, because of the corresponding restrictions on calculation step length. 

4.2 Approximations for choking mass flow 
As the expansion rates in L.P. turbine blade passages are quite rapid it is reasonable to 

examine how closely the flow conditions approximate to frozen flow. The term "frozen flow" 
refers to a hypothetical limiting case in which no heat or mass transfer takes place between the 
phases. In frozen flow the gas behaves as if it were in isolation and we have the usual gas 
dynamic expressions for the singular state properties p*, T*, p* in terms of stagnation 
properties p;'), TI;, p'~ at duct entry. The constants Cp, R and specific heat ratio 3'(-- 1.32) for 
low pressure steam are chosen to fit the gas properties in the region of the saturation line. The 
singularity condition c* = ~/(yRT*) occurs at the geometric throat, thus for the frozen mass 

flow 

G! = (p"A,c)* + G' 

Now the proportion of the overall mass flow contributed by the droplets remains unchanged 

between the inlet and the throat so, G'= yIG I and 

/ r  / 2 \ur+n/(~'-D1 l j/(,_,,). 
- ( !  - Y t )  - 

[4.3] 

The equilibrium value for choking mass flow, G, can be obtained to reasonable accuracy by 
assuming an effective expansion exponent 3', of 1.12 for the mixture as a whole. This leads to 
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the same form of expression as in [4.3] but with slightly different stagnation properties and 
without the factor ( I -  y~)-'. 

The ratio (Wl = Gt/G,) of frozen and equilibrium choking flows is plotted against inlet 
wetness in figure 4. It has been assumed that the inlet flow is initially in equilibrium. The 
supercooling developed in a frozen flow expansion to the throat and the consequent value of 
the flow coefficient/~L decrease as the inlet Mach number approaches unity. For an inlet Mach 
number of 0.5 and a wetness of 3%, we have for example from figure 4 that the frozen flow 
exceeds the equilibrium calculation by some 6%. The actual choking flow will be somewhere 
between the frozen and equilibrium limits for wet inlet conditions since condensation on 
existing droplets allows a partial restoration of equilibrium. 

4.3 Some computed examples o[ choked wet steam flows 
In order to assess the extent of non equilibrium effects on the choking process in the final 

low pressure stages of steam turbines various flows in a convergent divergent duct were 
computed using SLIPFLO. The duct, intended to be representative of a blade passage, was a 
shortened version of one investigated by Bakhtar & Young (1978). It had a contraction ratio of 
1.5 and measured 5.08 cm from entry to throat, the included divergence angle of the walls 
downstream of the throat was 2 °. Monodispersions with initial droplet radii ranging from 0.01 to 
5/zm, and wetness fractions of 0.03, 0.05, and 0.10 were considered. Equilibrium entry 
conditions at a pressure of 0.1 bar were assumed. Figure i shows the Mach number and 
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supersaturation distributions along the duct for an inlet wetness of 3% for two different droplet 
sizes. The throat Mach number is less than unity and this departure from pure gas behaviour is 
most pronounced for the smaller droplet sizes. The 0. i ~.m case gave a throat Mach number of 
0.972 and a singularity throat separation of about 3 ram. The slip between the phases reached 
approximately 30 m/see for the 0.5 ~m droplets and remained less than 10 m/see for droplets of 
less than 0.1 o.m radius. The larger droplet flows having less surface area available for 
interphase heat transfer, exhibit the deepest supersaturation. The large supercooling (>30°C) 
for the 0.5 t~m droplet case would be relieved by a secondary nucleation in the supersonic zone 
not shown in the figure. Bakhtar & Young have described the effect of the duct divergence 
angle (i.e. the supersonic expansion rate) on the choking behaviour. 

Figure 2 shows choking mass flows computed for the test duct. expressed as a ratio of the 
"theoretical frozen" choking flow. The frozen choking flow is independent of the duct geometry 
and forms an upper limiting asymptote which is approached by increasing the droplet size or 
reducing the wetness fraction. Converse changes in droplet size and wetness fraction give flows 
which are nearer equilibrium values. (Equilibrium flows corresponding to the three wetness 
fractions, marked Eu~, E,~ and Ev, in figure 2, have been calculated by the approximate effective 
exponent method, e.g. figure 4.) The duct expansion rate and inlet pressure level also influence 
the choking flow. A duct with a faster expansion rate would give curves tending more quickly to 
the frozen flow asymptote, whilst a higher inlet pressure (I.0 bar say) improves the free 
molecule heat transfer for a given droplet size and produces a slight shift towards equilibrium 
behaviour. 

Figure 3 shows the choking mass flow variation obtained with revised Knudsen number 
weighting in the expression for heat transfer coefficient (i.e. [2.181). Comparison with figure 2 
reveals that the reweighted calculation gives a more rapid approach towards equilibrium 
behaviour with reducing droplet size whilst the large droplet results are unchanged. The full 
Puzyrewski & Studzinski model was computed for just two cases (0.3 and 5.0 tzm droplets) and 
the results for choking mass flow and development of supersaturation were difficult to 
distinguish from the calculation with revised Knudsen weighting. The computation was 
however at least an order of magnitude slower. 

The chained curves in figure 2 show flows computed with separate phase equations but 
velocity different terms neglected as discussed earlier (reductions (i) and (it)). The smaller 
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droplet flows exceed those of the full calculation by about 2% for the 0.05 wetness case. The 
approximation is best for low wetness fractions and large droplets. 

The dashed curves show flows computed with the homogeneous flow mixture equations. 
They agree well with the full calctdation for small droplets but do not approach the single 
frozen flow asymptote with increasing droplet size. This formulation also has artificial acoustic 
properties and should be avoided if possible. The approximation 

Dc 
U i = C - -  T 2 ~ -  

obtained by neglecting the derivative of the relative velocity ( e - u J  will often give the droplet 
velocity field to sufficient accuracy. 

5. ACOUSI'IC PROPAGATION IN I.OW PRESSURE WET STEAM 

To understand the propagation of small waves in a two phase medium one only need 
consider linearised forms of the flow equations. Accordingly we define small perturbations (f~, e, 
etc.) about mean values of the flow variables which are designated with a zero suffix, i.e. put 
p" = p. + ~ . . . .  etc. where (fJlpo)'~ I. The velocities are taken relative to the mean fluid motion 
and the temperature perturbations are defined with respect to the saturation condition at the 
mean pressure (i.e. c,, = 0, T;; = Trip,)). Consider one dimensional wave propagation with the 
direction of propagation along the : axis. 

In terms of perturbation quantities, neglecting second order terms, [2.21, [2.4], [2.6], [2.8], 

[2.10] and [2.121 reduce to: 
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. •  a~ C,, aft 
+ p , ~ =  -PO~oo at 

O t i  p. O~ C,. ath 
C. + poC. o-7- ~" ( 1 - v,,) - - - - ~ -  a~ = p'' ~, ,  at 

ae a# 9 Oo a~ = - a ~ -  o,, (e - ~) a~ = ! (  e _ ~) 
: Ot t :  

at i ~# =±(t'- t). 
8t crpo Ot t l  

C, a t '  h,.o a,~ = _ Cp ( ~ , _  "t) 
• at mo at C,.~I 

[5.1] 

C,, is the group y/(I - y). The thermal and kinematic relaxation times 1"1 and t, respectively are 
identified from the form of the differential equations for the gas temperature and droplet velocity. 

Cep'r."(l+3.8Kn ) 2p'ro: t l= 3C,,,k ~ t., = - - ~ , ,  (I + 2.53 Kn) 

For low pressure steam the linearised equation of state is 

lat~ l a# la'L 
p. at p. at T. at 

= 0 

and from the Clausius Clapeyron equation the saturation temperature perturbation i', satisfies 

a't, RT.-" ap 
at ht.(;pu at 

Again the option exists of setting the droplet temperature (i.e. taking ~" = T,) or treating it as a 
free variable and introducing the linearised Hertz Knudsen droplet growth law. 

Now we assume travelling harmonic wave solutions of the form 

fi = fl e,~r- . : )  = fl e~A: ei,.. -:t,,) 

where fl is the wave amplitude, which is in general complex and describes the phase of the 
wave; a is the speed of wave propagation (i.e. the acoustic speed); X is the wave attenuation 
coefficient; a and A are given by the real and imaginary parts of the wave number K i.e. 
a = c o / R e ( x )  a n d  X = - Ira(K). 

Substituting harmonic solutions for (~, & li, #, etc.) just consists of replacing the derivative 
operators a/at, alaz by ico and -iK respectively which leads to an equation system: 

[A]{v} = {0} where {r} r = 05. & ~,/5. '/', ~, P~z) 

For a non trivial solution the determinant of the coefficient matrix [A] must vanish, and this 
condition gives the dispersion equation 

.p 

= am (I + ioJt~)(I +/cot:)  [5.2] 
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where 

R J.~CK~;~, and a J DAVll)~i()% 

= CrT"pr" 

u,: I_[C"T"-Pr"+C'CC~T"'~CC'\h,.,;]\ h--~-o )]RT": 
[5 31 

and 

pt/'(I - y) 
ae 2 = [5.41 

(NB. The mean value notation has been discarded and x now denotes (I - y).) 
Separating the real and imaginary parts of [5.2] gives the dispersion and attenuation laws for 

wave propagation in low pressure wet steam, i.e. the variation of acoustic speed and attenua- 
tion coefficient with frequency. The speeds a t and a, are the upper and lower dispersion limits 
corresponding to "infinite" and "zero" frequency wave propagation respectively. For any real 
non zero frequency the acoustic speed lies between these limits. The lower limit a,. is the 
equilibrium propagation speed. This may be shown by deriving [5.4] from purely ther- 
modynamic arguments by considering the partial derivative (Op/Op), for the mixture as a whole 
with the assumption of equal phase temperatures. Equations [5.3] :rod [4.2] for the upper 
dispersion limit a t , and the singular velocity in choking flow, are identical within the accuracy 
implicit in the linearisation. This is to be expected since it guarantees that no pressure signal 
may propagate upstream of the singularity, whatever its form, which is consistent with the 
conventional conception of the choking process. The speed a t relates to propagation under 
frozen flow conditions which are approached when processes become rapid relative to the 
relaxation times (i.e. to'r,,> I). If the droplet temperature T' is treated as a free variable a t = a" 
is obtained in place of [5.31 but the dispersion law becomes more complex algebraically. It is 
fairly certain that numerical differences in the dispersion between the two formulations are 
small. The variations in acoustic speed and attenuation for monodispersions of radii (0.1 and 
1.0/.tin) in steam of 0.1 bar have been computed from equation (5.2) and found to agree with the 
results of Petr (1973).1 

The gas perturbation velocity 0 and its associated potential function 4~ (i.e. t" = -&blOz) 
must satisfy a generalised wave equation of the form 

0"6 - ( ~ ) : @  = 0 0 z :  - [5.51 

where the wave speed to/• is complex. 
Substituting for K/to from [5.2] and noting that for a unit wave solution e "~t-":~ the 

operations alat, a21at :, a:loz 2 are equivalent to multiplications by ito, -co: and - r  "~ respectively, we 
find that 4, must satisfy the partial differential equation 

+ [(I -.~,/-la?),,-T~ ~']~,a;  oc' ) = o. 

- a,.-- 2 O:--'T] 

[5.61 

The above is an 'acoustic' equation for low pressure wet steam. A little re-arrangement of terms 

+There are some typographical errors in the dispersion equation'; quoted in Petrs paper. 



AN EQUATION SET FOR NON-EQUILIBRIUM TWO PHASE FLOW ~0~ 

confirms that it is exactly the equation given by Petr, and if we ignore the kinematic relaxation 
time and concentration of the secondary phase it reduces to the form of Einstein's acoustic 
dispersion equation for chemically reacting gases (see Wegener 1970). Just as in classical 
compressible flow theory one may proceed from the acoustic equation to a two or three 
dimensional potential equation with respect to fixed co-ordinates by making a change of 
independent variables. This provides a basis for approaching slender body flow problems and 
Petr (1979) has recently obtained solutions for supersonic wedge flows by finding co-ordinate 
transformations analogous to the PrandtI-Giauert transformation. 

6. CONCLUSIONS 

It is necessary to allow distinct velocities for the gas and liquid phases in multiphase flow 
equations if the correct transonic behaviour of a muitiphase medium is to be reproduced. It has 
been shown that the condition of choking flow occurs when the flow velocity reaches the 
"frozen" acoustic speed at some cross section in a nozzle flow. This is also the limiting 
propagation speed for small pressure waves. The expression for "frozen" acoustic speed 
depends on whether droplet temperature is treated as a free variable in the mathematical model 
but it may in either event be taken as equal to the acoutic speed of the gas alone for all practical 
numerical purposes. The choking mass flow varies between limits corresponding to equilibrium 
and frozen flow behaviour, according to the droplet size, wetness fraction, and the flow 
expansion rate. The variation is also governed by the heat and mass transfer formulae adopted. 
The Puzyrewski & Studzinski model for droplet growth (assuming a condensation coefficient of 
around unity) predicts faster rates of transfer for small droplets than Gyarmathy's model, and 
consequently approaches equilibrium behaviour in the choking problem more quickly. Gyar- 
mathy's model with revised Knudsen weighting appears to be a very good approximation to 
Puzyrewski and Studzinski's model and has considerable computational advantages, but further 
study of droplet growth calculations following nucleation is required to establish whether this 
simplification of the droplet temperature dynamics remains valid over a wide range of 
conditions. 

In design mass flow calculations for turbine stages it is best to work from the frozen flow 
limiting values making a downward revision according to the information on expansion rate and 
wetness available. The internal loss associated with the relative motion between phases is small 
compared with thermodynamic losses resulting from interphase exchanges of heat and matter. 

The equation set for wet vapour flows given in both integral and differential forms is 
properly determined and consistent in that individual phase equations sum exactly to give the 
required overall mixture equations, and all the basic physical conservation laws are observed. 
The equations have been shown to embody the correct physical properties in a number of 
fundamental problems and should be suitable as a basis for more complex condensing flow 
problems of concern to the Engineer. 
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